Matrices de Gram

Partie I Matrices de Gram

E est un \mathbb{R} ev muni d'un produit scalaire noté $(\cdot | \cdot)$.

Soit $p \in \mathbb{N}^*$ et soit $(a_i)_{1 \le i \le p}$ une famille de vecteurs de E. On pose :

$$V(a_{1},...,a_{p}) = \langle a_{1},...,a_{p} \rangle ;$$

$$\Phi(a_{1},...,a_{p}) = ((a_{i}|a_{j}))_{1 \leq i,j \leq p} (\in \mathcal{M}_{p}(\mathbb{R})) ;$$

$$G(a_{1},...,a_{p}) = \det(\Phi(a_{1},...,a_{p})).$$

1. Soient $C, ..., C_p$ les vecteurs-colonne de $\Phi(a_1, ..., a_p)$ dans \mathbb{R}^p .

Démontrer que si $\lambda_1,\,...,\,\lambda_p\in\mathbb{R}^p$ il y a équivalence entre les énoncés :

(a)
$$\sum_{k=1}^p \lambda^k a_k = 0_E$$
 et (b) $\sum_{k=1}^p \lambda^k C_k = 0_{\mathbb{R}^p}$.

- 2. En déduire que $(a_i)_{1 \leq i \leq p}$ est libre si et seulement si $\Phi(a_1,...,a_p) \in GL_p(\mathbb{R})$.
- 3. Plus généralement, démontrer que :

$$\operatorname{rg}(\Phi(a_1,...,a_p)) = \operatorname{rg}(a_1,...,a_p) \ (= \dim_{\mathbb{R}}(V(a_1,...,a_p))).$$

Partie II Application à l'étude d'une famille de polynômes

Dans cette partie, $E = \mathbb{R}[X]$ est muni d'un produit scalaire quelconque $(\cdot | \cdot)$. Si $n \in \mathbb{N}$ on pose $E_n = \{P \in E \mid \deg(P) \leq n\}$.

- 1. Soit $n \in \mathbb{N}^*$. Démontrer qu'il existe un polynôme T_n et un seul tel que :
 - (1) $\deg(T_n) = n$; (2) T_n unitaire¹ et (3) $T_n \in E_{n-1}^{\perp}$.

[On écrira $T_n = X^n + \sum_{k=0}^{n-1} \tau_k X^k$ pour tenir compte de (1) et (2) et on utilisera le I.]

2. On pose de plus $T_0 = 1$.

Démontrer que, pour tout $n \in \mathbb{N}$, $(T_i)_{0 \le i \le n}$ est une base orthogonale de E_n .

3. Soit $(S_n)_{n\in\mathbb{N}}$ une famille orthogonale telle que : $\forall n\in\mathbb{N}$, $\deg(S_n)=n$. On note σ_n le coefficient dominant de S_n . Calculer S_n à l'aide de σ_n et de T_n pour tout $n\in\mathbb{N}$.

Partie III Application au calcul de la distance à un sev

E est de nouveau un ev euclidien quelconque. On reprend les notations du I.

1. On suppose que $a_1, ..., a_p$ appartiennent à un sev F de dimension $p \in \mathbb{N}^*$ (2). On choisit une base orthonormale $\mathcal{U} = (u_i)_{1 \leq i \leq p}$ de F. On note $A = \text{mat}(a_1, ..., a_p; \mathcal{U})$ ($\in \mathcal{M}_p(\mathbb{R})$). Démontrer que :

$${}^{t}A \times A = \Phi(a_1, ..., a_n).$$

- 2. En déduire que $G(a_1,...,a_p) \ge 0$ et que : $(a_i)_{1 \le i \le p}$ libre $\Leftrightarrow G(a_1,...,a_p) > 0$.
- 3. Soit F un sev de E, de dimension $p \in \mathbb{N}^*$. On suppose que $\mathcal{A} = (a_i)_{1 \leq i \leq p}$ est une base de F. Démontrer que pour tout vecteur x de E la distance de x à F est donnée par :

$$d(x; F)^{2} = \frac{G(x, a_{1}, ..., a_{p})}{G(a_{1}, ..., a_{p})}.$$

¹ au sens des polynômes, càd de coefficient dominant égal à 1.

²ce qui est légitime, puisque rg $(a_1, ..., a_p) \leq p$.