Un exemple de calcul de déterminant $n \times n$

TD de maths

a et b étant deux réels positifs, on désigne par

• $M_n(a,b)$ la matrice d'ordre $n, n \ge 2$:

$$M_n(a,b) = \begin{pmatrix} 1 & -a & \cdots & -a \\ -b & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -a \\ -b & \cdots & -b & 1 \end{pmatrix} ;$$

- $D_n(a,b)$ le déterminant de $M_n(a,b)$.
- 1. Calculer $D_2(a, b)$ et $D_3(a, b)$.
- 2. Quelle relation y a-t-il entre $D_n(a,b)$ et $D_n(b,a)$?
- 3. (a) Pour $a \neq b$, montrer que

$$D_{n+1}(a,b) = f(a)D_n(a,b) + g(a,b),$$

où f(a) et g(a,b) sont des fonctions que l'on déterminera.

(b) En déduire que

$$D_n(a,b) = \frac{b(1+a)^n - a(1+b)^n}{b-a}.$$

- 4. Calculer $D_n(a, a)$.
- 5. Soit a un réel fixé.
 - (a) Déterminer $\lim_{b\to a} D_n(a,b)$.
 - (b) Quelle remarque peut-on faire?
- 6. On suppose désormais que $0 \le a < b$.
 - (a) Montrer que $D_n(a,a) > 0 \Leftrightarrow a < \frac{1}{n-1}$.
 - (b) Montrer qu'une condition suffisante pour que $D_n(a,b) > 0$ est que $b \leq \frac{1}{n-1}$.

FIN

[D'après ENSAIT Roubaix 1987 maths 1 partiel.]