PCSI - mathématiques

Fonctions convexes

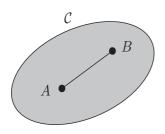
1 Convexes d'un \mathbb{R} -espace affine

Soit \mathcal{E} un \mathbb{R} -espace vectoriel muni de sa structure affine canonique. Si $A,\,B\in\mathcal{E},$ le segment [A,B] est

$$\begin{array}{ll} [A,B] & = & \left\{ \left(1-t\right)A+tB \mid t \in [0,1] \right\} \\ & = & \left\{A+t\overrightarrow{AB} \mid t \in [0,1] \right\}. \end{array}$$

Définition 1 Une partie $\mathcal C$ de $\mathcal E$ est convexe si :

$$\forall A \in \mathcal{C}, \ \forall B \in \mathcal{C}, \ [A, B] \subset \mathcal{C}.$$



Exemple 1

- 1. \mathcal{E} , \varnothing , les singletons
- 2. les sva de \mathcal{E} ;
- 3. les segments;
- 4. les boules ouvertes (resp. fermées) (pour toute norme $sur\ \mathcal{E}$).

2 Fonctions convexes

I est un intervalle de \mathbb{R} ; f est une application de I dans \mathbb{R} .

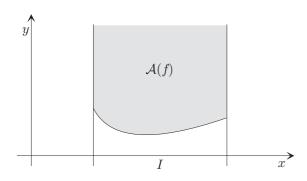
Définition 2 La fonction f est convexe sur I si pour tout couple (x, y) de points de I et pour tout $t \in [0, 1]$ on a:

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$
.

Géométriquement, cela signifie que la partie

$$\mathcal{A}(f) \stackrel{\text{def.}}{=} \{(x,y) \mid x \in I \text{ et } y \geq f(x)\}$$

est une partie convexe de \mathbb{R}^2 (au sens du \S précédent).



Remarque 1 Pour prouver que f est convexe sur I il suffit d'établir que pour tout couple (x,y) de points de I tels que x < y et pour tout réel t de]0,1[on a $f((1-t)x+ty) \le (1-t)f(x)+tf(y)$.

La définition se généralise à un nombre quelconque de points :

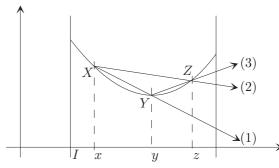
Théorème 1 On suppose que f est convexe sur I. Si $n \in \mathbb{N}^*$ et $si \ x_1, \ ..., \ x_n \in I \ ; si \ t_1, \ ..., \ t_n \in \mathbb{R}_+$ et $si \ \sum_{i=1}^n t_i = 1$ on a:

$$f\left(\sum_{i=1}^{n} t_{i} x_{i}\right) \leq \sum_{i=1}^{n} t_{i} f\left(x_{i}\right).$$

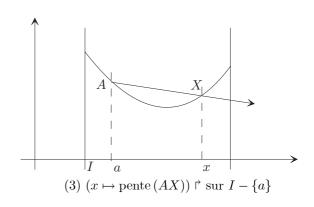
Ce dernier résultat est parfois appelé inégalité de Jensen.

Théorème 2 Il y a équivalence entre

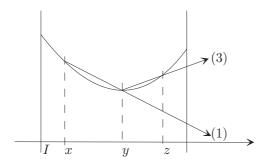
- 1. f est convexe sur I ;
- 2. Pour tout triplet (x,y,z) de points de I tel que x < y < z, $\frac{f(y)-f(x)}{y-x} \le \frac{f(z)-f(x)}{z-x} \le \frac{f(z)-f(y)}{z-y}$;
- 3. Pour tout point a de I la fonction q_a définie par $q_a\left(x\right) = \frac{f(x) f(a)}{x a}$ est croissante sur $I \{a\}$.



(2) pente $(XY) \le \text{pente } (XZ) \le \text{pente } (YZ)$



Remarque 2 Pour démontrer que f est convexe sur I il suffit de prouver que pour tout triplet (x, y, z) de points de I on a $\frac{f(y)-f(x)}{y-x} \leq \frac{f(z)-f(y)}{z-y}$.



2.1 Propriétés d'une fonction convexe sur un intervalle I

Une fonction convexe f sur un intervalle I admet des dérivées à gauche et à droite en tout point de \mathring{I} . Elle est donc continue en chaque tel point. Toutefois, attention!

Remarque 3 f n'a aucune raison d'être continue en $\alpha = \inf I$ (resp. $\beta = \sup I$). La convexité exige seulement, dans ces cas : $f(\alpha) \ge \lim_{\alpha^+} f$ (resp. $f(\beta) \ge \lim_{\beta^-} f$).

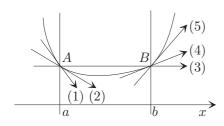
Théorème 3 Si f est convexe sur I et si $a \in \mathring{I}$, f est dérivable à droite et à gauche en a et :

$$\sup_{\substack{x < a \\ x \in I}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = f_g'\left(a\right) \le f_d'\left(a\right) = \inf_{\substack{x \ge a \\ x \in I}} \frac{f\left(x\right) - f\left(a\right)}{x - a}.$$

Le th. suivant précise le rapport entre les dérivées à gauche et à droite en a et b (a < b) :

Théorème 4 Si f est convexe sur I, f est continue sur \mathring{I} , dérivable à droite et à gauche sur \mathring{I} , les fonctions f'_g et f'_d sont croissantes sur \mathring{I} et pour tout couple (a,b) de points de \mathring{I} tel que a < b on a:

$$f'_{g}(a) \le f'_{d}(a) \le \frac{f(b) - f(a)}{b - a} \le f'_{g}(b) \le f'_{d}(b)$$
.



Ainsi, les fonctions f'_g et f'_d sont croissantes sur \mathring{I} . La réciproque est-elle vraie ? Cela nécessite une hy-

La réciproque est-elle vraie ? Cela nécessite une hypothèse complémentaire pour préciser la situation en les bornes de I:

Théorème 5 Si $f: I \to \mathbb{R}$ est continue sur I et dérivable à droite (resp. à gauche) sur \mathring{I} , f est convexe sur I ssi la fonction f'_d (resp. f'_g) est croissante sur \mathring{I} .

L'hypothèse de continuité est plus forte que celle de la remarque 3. Ce résultat fournit plusieurs moyens pratiques de vérifier qu'une application est convexe.

Corollaire 1

- 1. Si $f: I \to \mathbb{R}$ est continue sur I et dérivable sur \mathring{I} , f est convexe sur I ssi f' est croissante sur \mathring{I} .
- 2. Si $f: I \to \mathbb{R}$ est continue sur I et deux fois dérivable sur \mathring{I} , f est convexe sur I ssi $f'' \geq 0$ sur \mathring{I} .

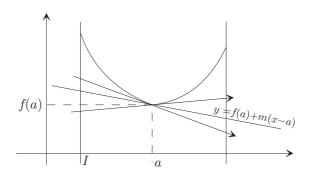
Exemple 2 obtenus en appliquant le corollaire 1. :

- 1. $x \mapsto x^2$ est convexe sur \mathbb{R} .
- 2. $x \mapsto e^x$ est convexe sur \mathbb{R} .
- 3. Si a > 1, $x \mapsto a^x$ est convexe sur \mathbb{R} .
- 4. $x \mapsto \frac{1}{x}$ est convexe sur \mathbb{R}_+^* .
- 5. $x \mapsto -\ln x$ est convexe sur \mathbb{R}_+^* .

Les exemples 2.2. et 2.5. sont fondamentaux.

On a enfin le théorème suivant, qui exprime que la courbe représentative d'une fonction convexe est au-dessus de toutes ses (demi-)tangentes :

Théorème 6 On suppose que f est convexe sur I. Si $a \in \mathring{I}$ et si m est un réel tel que $f'_g(a) \le m \le f'_d(a)$, on a pour tout $x \in I$: $f(x) \ge f(a) + m(x-a)$.



2.2 Fonctions concaves

Définition 3 $f: I \to \mathbb{R}$ est concave sur I si -f est convexe sur I.

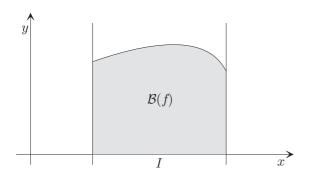
Cela signifie que pour tout couple (x, y) de points de I et pour tout $t \in [0, 1]$:

$$f\left(\left(1-t\right)x+ty\right)\geq\left(1-t\right)f\left(x\right)+tf\left(y\right)$$

ou encore que

$$\mathcal{B}(f) \stackrel{\text{def.}}{=} \left\{ (x, y) \in \mathbb{R}^2 \mid x \in I \text{ et } y \leq f(x) \right\}$$

est une partie convexe de \mathbb{R}^2 .



Exemple 3 ln *est concave sur* $]0, +\infty[$.

Les fonctions affines sur I sont les applications de la forme $f: I \to \mathbb{R}$; $x \mapsto \alpha x + \beta$ où $\alpha, \beta \in \mathbb{R}$.

Théorème 7

- 1. Une fonction affine $sur\ I$ est convexe et concave $sur\ I$.
- 2. Si $f: I \to \mathbb{R}$ est une fonction convexe et concave sur I, f est une fonction affine sur I.

Ce deuxième point n'est pas entièrement trivial, car on ne suppose pas a priori que f est deux fois dérivable sur I.

3 Relations de Hölder et de Minkowski

3.1 Cas des familles finies

La concavité de la fonction ln (ex. 3) va ici être poussée dans ses derniers retranchements.

Lemme 1 Soient α , $\beta \in \mathbb{R}$ tels que α , $\beta \geq 0$, $\alpha + \beta = 1$. Quels que soient $x, y \in \mathbb{R}_+$ on a:

$$x^{\alpha}y^{\beta} \le \alpha x + \beta y.$$

L'inégalité de HÖLDER consiste en la généralisation à un nombre quelconque de points :

Théorème 8 (Hölder) Soient α , $\beta \in \mathbb{R}$ tels que $\alpha \geq 0$, $\beta \geq 0$, $\alpha + \beta = 1$. Si $n \in \mathbb{N}^*$ et si $(a_i)_{1 \leq i \leq n}$ et $(b_i)_{1 \leq i \leq n}$ sont des familles d'éléments de \mathbb{R}_+ on a:

$$\sum\nolimits_{i=1}^{n}a_{i}^{\alpha}b_{i}^{\beta}\leq\left(\sum\nolimits_{i=1}^{n}a_{i}\right)^{\alpha}\left(\sum\nolimits_{i=1}^{n}b_{i}\right)^{\beta}.$$

Cet énoncé généralise l'inégalité de Schwarz de l'algèbre bilinéaire. On le voit facilement en modifiant légèrement l'écriture comme suit :

Corollaire 2 Si p, $q \in \mathbb{R}$, p > 0, q > 0, $\frac{1}{p} + \frac{1}{q} = 1$; si $n \in \mathbb{N}^*$ et si $(a_i)_{1 \leq i \leq n}$ et $(b_i)_{1 \leq i \leq n}$ sont des familles d'éléments de \mathbb{R}_+ on a:

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} b_i^q\right)^{\frac{1}{q}}.$$

Remarque 4 Soient $p, q \in \mathbb{R}$ tels que p > 0, q > 0, $\frac{1}{p} + \frac{1}{q} = 1$. Si $(x_i)_{1 \le i \le n}$ et $(y_i)_{1 \le i \le n}$ sont des familles d'éléments de $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} on a:

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}.$$

Ce dernier énoncé, lorsque $\mathbb{K}=\mathbb{R}$ et p=q=2, redonne l'inégalité de SCHWARZ.

Le théorème de MINKOWSKI admet les mêmes généralisations :

Théorème 9 (Minkowski) Soit $p \in \mathbb{R}$, $p \geq 1$. Si $(a_i)_{1 \leq i \leq n}$ et $(b_i)_{1 \leq i \leq n}$ sont des familles d'éléments de \mathbb{R}_+ on a:

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}}.$$

Corollaire 3 Soit $p \in \mathbb{R}$, $p \ge 1$. Si $(x_i)_{1 \le i \le n}$ et $(y_i)_{1 \le i \le n}$ sont des familles d'éléments de $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} on a :

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}.$$

Ceci redonne l'inégalité de MINKOWSKI usuelle lorsque $\mathbb{K}=\mathbb{R}$ et p=q=2.

En outre, remarquons que si l'on pose pour $x=(x_i)_{1\leq i\leq n}\in\mathbb{R}^n,\ p\in\mathbb{R},\ p\geq 1$:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}},$$

alors $\|\cdot\|_p$ est une *norme* sur \mathbb{R}^n .

3.2 Cas des intégrales

 $a, b \in \mathbb{R}$. Si $f : [a, b] \to \mathbb{R}$ est intégrable et si $f \geq 0$ (càd : $f(t) \geq 0$ pour tout t), f^{α} est intégrable sur [a, b] donc intégrable. Le passage des inégalités du § 3.1. aux intégrales est assuré par le biais des sommes de RIEMANN.

Théorème 10 (Hölder) Soient α , $\beta \in \mathbb{R}$ tels que $\alpha \geq 0$, $\beta \geq 0$, $\alpha + \beta = 1$. Si f, $g : [a,b] \to \mathbb{R}$ sont intégrables et positives sur [a,b] on a:

$$\int_{[a,b]} f^{\alpha} g^{\beta} \le \left(\int_{[a,b]} f \right)^{\alpha} \left(\int_{[a,b]} g \right)^{\beta}.$$

Corollaire 4 Soient $p, q \in \mathbb{R}, p > 0, q > 0, \frac{1}{p} + \frac{1}{q} = 1$. Si $f, g: [a,b] \to \mathbb{K} = \mathbb{R}$ ou \mathbb{C} sont intégrables sur [a,b] on a:

$$\left| \int_{[a,b]} fg \right| \le \left(\int_{[a,b]} \left| f \right|^p \right)^{\frac{1}{p}} \left(\int_{[a,b]} \left| g \right|^q \right)^{\frac{1}{q}}.$$

Lorsque p=q=2 on retrouve l'inégalité de Schwarz pour les intégrales.

Théorème 11 (Minkowski) Soit $p \in \mathbb{R}$, $p \geq 1$. Si f, $g : [a, b] \to \mathbb{K} = \mathbb{R}$ ou \mathbb{C} sont intégrables sur [a, b] on a :

$$\left(\int_{[a,b]} |f+g|^p \right)^{\frac{1}{p}} \le \left(\int_{[a,b]} |f|^p \right)^{\frac{1}{p}} + \left(\int_{[a,b]} |g|^p \right)^{\frac{1}{p}}.$$

Ainsi, de même qu'au 3.1, la quantité

$$\left\|f\right\|_{p} = \left(\int_{[a,b]} \left|f\right|^{p}\right)^{\frac{1}{p}}$$

définit une norme sur $C^0([a,b],\mathbb{R})$ (mais seulement une semi-norme sur Int $([a,b],\mathbb{R})$).