CONCOURS COMMUN SUP 2002

DES ÉCOLES DES MINES D'ALBI, ALÈS, DOUAI, NANTES

Épreuve de Mathématiques

(toutes filières)
Mardi 21 mai 2002 de 14h00 à 18h00

Instructions générales :

Les candidats:

- doivent vérifier que le sujet comprend 4 pages numérotées 1/4, 2/4, 3/4 et 4/4,
- sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées,
- colleront sur leur première feuille de composition l'étiquette à code à barres correspondante.

Problème d'Analyse

- 1. Soit f l'application de \mathbb{R} dans \mathbb{R} définie par χ f(0) = 1 et $\forall t \neq 0$, $f(t) = \frac{Arctan(t)}{t}$.
- 1.1 Montrer que f est continue sur \mathbb{R} et paire.
- 1.2 Donner le développement limité à l'ordre 1 de f(t) au voisinage de 0. En déduire que f est dérivable en 0, et donner f'(0).
- 1.3 Justifier que f est dérivable sur \mathbb{R} , et calculer f'(t), pour $t \in \mathbb{R}^*$
- 1.4 A l'aide d'une intégration par parties, montrer que : $\forall t \in \mathbb{R}^*$, $\int_0^t \frac{w^2}{(1+w^2)^2} dw = -\frac{1}{2} t^2 f'(t)$. En déduire le sens de variation de f.
- 1.5 Tracer la courbe représentative de f dans un repère orthonormé (unité : 2 cm).

 (On ne demande pas l'étude des points d'inflexion)
- 2. Soit ϕ l'application de $\mathbb R$ dans $\mathbb R$ définie par : $\phi(0)=1$ et $\forall x\neq 0, \ \phi(x)=\frac{1}{x}\int_0^x f(t)dt$.
 - 2.1 Montrer que ϕ est continue sur $\mathbb R$ et paire.
 - 2.2 Montrer que : $\forall x \in \mathbb{R}, f(x) \leq \phi(x) \leq 1$. (on pourra commencer par supposer x > 0)
 - 2.3 Montrer que : $\forall x \in \mathbb{R}^*, \ \phi'(x) = \frac{1}{x} (f(x) \phi(x)).$

Montrer que ϕ est dérivable en 0, avec $\phi'(0) = 0$. Donner les variations de ϕ .

- 2.4 Montrer que : $\lim_{x\to+\infty}\frac{1}{x}\int_1^x f(t)dt=0$. En déduire que $\lim_{x\to+\infty}\phi(x)=0$.
- 2.5 Tracer la courbe représentative de ϕ dans le même repère que celle de f.

(On ne demande pas l'étude des points d'inflexions)

- 3. Soit (u_n) la suite définie par $u_0 \in \mathbb{R}$ et pour tout n de \mathbb{N} : $u_{n+1} = \phi(u_n)$, où ϕ est l'application du 2).
 - 3.1 Montrer que : $\forall t \ge 0, \ 0 \le \frac{t}{1+t^2} \le \frac{1}{2}$.
 - 3.2 Montrer que, pour tout x strictement positif : $|\phi'(x)| \le \frac{1}{x} (1 f(x)) = \frac{1}{x^2} \int_0^x \frac{t^2}{1 + t^2} dt$. (On pourra utiliser 2.2 et 2.3). En déduire que, pour tout x strictement positif : $|\phi'(x)| \le \frac{1}{4}$, et que cette inégalité reste vérifiée pour tout x de \mathbb{R} .
 - 3.3 Montrer que l'équation : $x \in \mathbb{R}$, $\phi(x) = x$ admet une unique solution. On note α cette solution. Montrer que $\alpha \in]0;1]$.

- 3.4 Prouver que : $\forall n \in \mathbb{N}, \mid u_{n+1} \alpha \mid \leq \frac{1}{4} \mid u_n \alpha \mid$.

 En déduire que (u_n) est convergente, et préciser sa limite.
- 4. On considère l'équation différentielle : $x^2y' + xy = Arctan(x)$.
 - 4.1 Résoudre cette équation différentielle sur] $-\infty$, 0[et sur]0, $+\infty$ [.
 - 4.2 Montrer que ϕ est l'unique solution sur $\mathbb R$ de cette équation différentielle.

Problème d'Algèbre

Dans ce problème, E désigne un espace vectoriel euclidien de dimension trois, $\mathcal{B}=(e_1,e_2,e_3)$ une base orthonormée de E. La norme de E est notée $\|\cdot\|$. On note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E, GL(E) l'ensemble des automorphismes de E, Id_E l'application identique de E, o_E le vecteur nul de E.

 ${\mathcal E}$ désigne un espace affine euclidien associé à $E,\,{\mathcal R}=(O,e_1,e_2,e_3)$ un repère orthonormé de ${\mathcal E}.$

- 1. Soit ψ l'endomorphisme de E dont la matrice relativement à \mathcal{B} est $A=\frac{1}{4}\begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$.
 - 1.1 Montrer que $\frac{4}{3}\psi$ est un demi-tour dont on précisera l'axe D.
 - 1.2 En déduire que ψ est la composée commutative de deux endomorphismes simples de E que l'on précisera.
- 2. On note S l'ensemble des endomorphismes φ de E pour lesquels :

$$\exists k \in [0; 1[, \forall x \in E, || \varphi(x) || \leq k || x ||$$

- 2.1 Montrer que ψ appartient à $S \cap GL(E)$.
- 2.2 Id_E appartient-il à S?
- 2.3 Montrer que S est stable pour \circ . $S \cap GL(E)$ est-il un sous-groupe de $(GL(E), \circ)$?
- 2.4 Soit φ un élément de S. Montrer que $Ker(\varphi Id_E) = \{o_E\}$. En déduire que (φId_E) appartient à GL(E).
- $2.5 \ \textit{Montrer que} \ \varphi \in \mathcal{S} \ \textit{si et seulement si} \ \exists k \in [0;1[, \ \forall x \in E, \ \Big(\| \ x \parallel = 1 \Longrightarrow \parallel \varphi(x) \parallel \leq k \Big).$
- 2.6 Soit $\varphi \in \mathcal{L}(E)$. On suppose qu'il existe une base orthonormée de E dans laquelle la matrice de φ est diagonale, à éléments diagonaux strictement inférieurs à 1 en valeur absolue. Montrer que $\varphi \in \mathcal{S}$.

- 3. Soit μ l'endomorphisme de E dont la matrice relativement à \mathcal{B} est $M=\dfrac{1}{6}\begin{pmatrix}3&1&-1\\1&3&1\\-1&1&1\end{pmatrix}$.
 - 3.1 On définit : $e_{1}^{'}=\frac{1}{\sqrt{3}}(e_{1}-e_{2}-e_{3})$, $e_{2}^{'}=\frac{1}{\sqrt{2}}(e_{1}+e_{2})$ et $e_{3}^{'}=\frac{1}{\sqrt{6}}(e_{1}-e_{2}+2e_{3})$.

Vérifier que $(e_1^{'}, e_2^{'}, e_3^{'})$ est une base orthonormée $\mathcal{B}^{'}$ de E.

- 3.2 Déterminer la matrice de μ dans la base $\mathcal{B}^{'}$. En déduire que $\mu \in \mathcal{S}$.
- 4. Soit φ_{α} l'endomorphisme de E dont la matrice relativement à B est $M_{\alpha} = \alpha \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$.

On se propose de prouver que $\varphi_{\alpha} \in \mathcal{S}$ si et seulement si $|\alpha| < \frac{1}{2}$.

Soit $x = x_1e_1 + x_2e_2 + x_3e_3$ un vecteur de E de norme 1.

- 4.1 Montrer que : $\|\varphi_{\alpha}(x)\|^2 = \alpha^2 (1 + (x_1 x_2 x_3)^2)$.
- 4.2 Le vecteur x s'écrit, dans la base $\mathcal{B}^{'}$ du 3.1 : $x=x_{1}^{'}e_{1}^{'}+x_{2}^{'}e_{2}^{'}+x_{3}^{'}e_{3}^{'}$.

Montrer que : $\|\varphi_{\alpha}(x)\|^{2} = \alpha^{2}(1+3x_{1}^{'2})$. En déduire que : $\|\varphi_{\alpha}(x)\| \leq 2 |\alpha|$.

Déterminer l'ensemble des x de E de norme 1 pour lesquels l'inégalité précédente est une égalité.

- 4.3 Montrer que $\varphi_{\alpha} \in \mathcal{S}$ si et seulement si $|\alpha| < \frac{1}{2}$.
- 5. Soit f une application affine de \mathcal{E} dans \mathcal{E} dont l'endomorphisme associé φ appartient à \mathcal{S} .
 - 5.1 Soit M un point de \mathcal{E} . Montrer que M est invariant par f si et seulement si $(\varphi Id_E)(\overrightarrow{OM}) = \overrightarrow{f(O)O}$.
 - 5.2 En déduire que f admet un point invariant et un seul, que l'on note $\Omega.$
 - 5.3 Justifier l'égalité : $\forall M \in \mathcal{E}, \ \overrightarrow{\Omega f(M)} = \varphi(\overrightarrow{\Omega M}).$
 - 5.4 On définit la suite (M_n) de points de \mathcal{E} par $M_0 \in \mathcal{E}$ et $\forall n \in \mathbb{N}$, $M_{n+1} = f(M_n)$.
 - 5.4.1 Montrer que $\lim_{n\to+\infty} \|\overrightarrow{\Omega M_n}\| = 0$.
 - 5.4.2 Soient (x_n) , (y_n) et (z_n) les suites réelles définies par : x_0 , y_0 et z_0 sont des réels, et :

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = \frac{1}{4}x_n & - & \frac{1}{4}y_n & + & 1 \\ \\ y_{n+1} = \frac{1}{4}y_n & + & \frac{1}{4}z_n & + & \frac{1}{2} \\ \\ z_{n+1} = \frac{1}{4}x_n & - & \frac{1}{4}z_n & + & 1 \end{cases}$$

Montrer que (x_n) , (y_n) et (z_n) sont convergentes, et préciser leurs limites respectives.